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Abst rac t .  This paper describes a genetic learning system called SIA, 
which learns attributes based rules from a set of preclassified examples. 
Examples may be described with a variable number of attributes, which 
can be numeric or symbolic, and examples may belong to several classes. 
SIA algorithm is somewhat similar to the AQ algorithm because it takes an 
example as a seed and generalizes it, using a genetic process, to find a rule 
maximizing a noise tolerant rule evaluation criterion. The SIA approach to 
supervised rule learning reduces greatly the possible rule search space when 
compared to the genetic Michigan and Pitt approaches. SIA is comparable 
to AQ and decision trees algorithms on two learning tasks. Furthermore, 
it has been designed for a data analysis task in a large and complex justice 
domain. 

1 In t roduc t ion  

Learning rules in propositional logic from a set of preclassified examples de- 
scribed in an at tr ibute/value based language is a problem well known and stud- 
ied in Machine Learning (Gums and Lavrac 1987). One reason for that is the 
fact that in many domains, events or experiences can be easily described using 
a set of variables or attributes. 

Among the many existing algorithms that solve this problem, one can point 
out, on one hand, some methods that use heuristics to search the rule space. 
For instance, the ID3-based algorithms learn decision trees involving attributes 
which are relevant from an information theory point of view (Quinlan 1986). 
Rules can then be extracted from decision trees, a process which usually increases 
the system classification accuracy (Quinlan 1987). Another example is the AQ 
algorithms, which learn rules using the heuristic star algorithm (Michalski et al 
1986) (Wnek and Michalski 1991). 

On the other hand, some methods use stochastic algorithms (Kononenko 
and Kovacic 1992) or genetic algorithms (Holland 1975) to find optimal rules. 
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Examples of such algorithms are the classifier systems, which usually learn rules 
(classifiers) from examples that are not preclassified (Goldberg 1989) (Wilson 
1987) (Venturini 1992), but which can also learn from preclassified examples 
(McCallum and Spackman 1990) (Bonelli and Parodi 1991). Other algorithms, 
for instance, are the GABIL system (De Jong and Spears 1991) which learns 
rules incrementally and the SAMUEL system (Grefenstette 1989) 

F,inally, some algorithms use a multistrategic Search, combining heuristic 
and probabilistic algorithms. For instance, genetic algorithms, denoted GAs 
in the following, can discover important attributes in cooperation with an AQ 
based algorithm (Vafaie and DeJong 1991), or, GAs can improve and refine 
rules learned by an AQ algorithm, using a subpart of the set of examples (Bala, 
DeJong and Pachowicz 1991). 

The genetic based rule searching algorithms mentioned above have a longer 
execution time than the heuristics methods. They also have fewer learning abil- 
ities: for instance, they do not handle easily numeric attributes because the 
classifier system rule description language is too simple, or because the GABIL 
method of encoding all possible values would lead to very long rules in the case 
of real-valued attributes. Furthermore, it has been recently shown (Wnek and 
Michalski 1991) that a genetic rule learning system, namely the classifier system 
CFS of Riolo, obtains the lowest performances among other learning methods, 
on a simple, noise free learning task: 

Thus, one motivation for this work is the building of a GA based learning 
method that would be globally equivalent, with respect to performances and 
learning abilities, to the heuristic based methods mentioned above. Furthermore, 
this work is also motivated by a real world data analysis task in a complex 
domain which would not be easily handled by the methods mentioned above. The 
main reasons for this are that attributes are numeric or symbolic, examples are 
described using a variable number of attributes (mainly because some attributes 
may be undefined for some examples), and may belong to several classes. 

In the following, section 2 describes SIA example and rule representations. 
Section 3 describes the main learning algorithm, the rule filtering algorithm, the 
classification procedure chosen and their main properties. Section 4 shows two 
evaluations of SIA on common learning tasks and section 5 describes the real 
task for which SIA has been designed. Section 6 concludes on this and future 
work. 

2 E x a m p l e  a n d  R u l e  R e p r e s e n t a t i o n  

2,1 Examples with Undefined Attributes, Multiple Classes and Weights 

SIA learns production rules from a set E z  of examples of events in a given 
domain. An example ex is described using n attributes A1,..., Am, which can be 
either numeric (real-valued for instance) or symbolic (with discrete values). 

Firstly, it is considered that k attributes are defined for all examples and 
that the remaining n - k attributes may be n n d e f i n e d  for some examples. For 
instance, suppose that cars are being described using the attributes n u m b e r  - 
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o f  - acc idents  and date - o f  - las t  - accident .  The attribute date - o f  - 
last  - accident  is undefined for cars that were never crashed. This notion of 
undefined at t r ibutes  includes not only logical cases of undefined values (as in 
the car example), but also the noisy cases of missing or unknown attributes 
values, and systematic missing values (Weinberg, Biswas and Koller 1992). 

Secondly, an example e z  may belong to several classes among a set C = 
{Cx, ...,C e} of possible classes. For instance, the description of an animal can 
belong to the class "dog" and to the class " m a m m a l " .  S IA  learns a separated 
definition of each class. 

Finally, examples can be weighted in order to create artificial examples dis- 
tributions in Ez .  For example, let us suppose that  the learning task is to learn 
rules about cars. These rules should conclude that a car is s a f e  or u n s a f e .  Let 
us suppose that  ~60 of the cars are safe. In order to learn reliable rules, many 
car examples must be recorded. Thus, a hundred of safe cars and a hundred of 
unsafe cars examples are recorded in Ez .  The probability, in E z ,  of a car to be 
safe is now �89 instead of ~0 in the real domain. To recreate the examples original 
distribution in Ex ,  a weight w = 9 should be assigned to safe cars examples, 
and a weight w = 1 to unsafe cars examples. These weights introduce biases in 
the learning process by making some examples more important  than others. 

Thus, an example ez  is represented as 

(e, CL,w) 

where e = {el, ..., en} is a vector of attributes values, among which some values 
may be undefined, C.~ is the list of classes e z  belongs to, and w is the example 
weight. 

2.2 At t r ib u t e s  based R u l e  R e p r e s e n t a t i o n  

SIA learns a representation of each class in {C1 .... ,Ck}. For a class Ci, the 
representation learned is a set of rules R of the form 

R : I F  condl A ... A cond~ T H E N  C l a s s  = Cb , S t r e n g t h  
, �9 �9 J Y Y 

C o n d i ~ i o n  p a r t  C o n c l u s i o n  p a r t  $ t r e n # i h  p a r t  

In R condition part, condi involves attribute Ai  and equals either: 

�9 " , ' ,  meaning that Ai  is not taken into account (the condition is always 
true), or 

�9 "Ai  = value" ,  where Ai is a symbolic attr ibute and value is an observed 
value of Ai ,  or 

�9 " B  < Ai  <_ B TM, where Ai is a numeric attr ibute and where the lower and 
upper bounds B and B r are such that  B j > B (B and B ~ computation is 
detailed in the following). 

An example of such a rule is 
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R1 : I F  * A date  - o f  - las t  - acc ident  = y e s t e r d a y  T H E N  Class = unsafe  

Using this rule condition format, a matching operator between a rule R and 
an example e z  can be defined: R matches the example ex  = (e ,CL,  w)  if all R 
conditions are true for vector e. If ez has an undefined or missing value for an 
attribute Ai ,  it can be matched by R only if Ai  is not taken into account by R 
conditions (eondl  = *). For instance, the event " n u m b e r  - o f  - acc iden t s  = 

0 A date  - o f  - last  - acc iden t  = u n d e f i n e d "  can not be matched by R1. 
The conclusion part concludes that  an example ez = (e, CL, w), matched by 

R, belongs to class Ci. If ez  really belongs to class Ci (i.e. Ci E CL), then ez is 
said to be correctly classified by R, else ez is misclassified. 

The strength part of R is a set of coefficients that  are used to measure the 
quality of R by computing a quality criterion C~ (R)  (see section 3). The higher 
C q ( R )  is, the more interesting R is. The value of this criterion represents the 
genetic strength of the rule that  the genetic search will try to maximize. 

This rule description language is thus slightly less powerful than the one use 
in AQ, because, for instance, a disjunction of conditions for the same class, is 
coded by several rules rather than by just one rule. 

Poss ib le  B o u n d s  for  N u m e r i c  C o n d i t i o n s .  When a numeric attribute Ai  is 
involved in the condition condi of the condition part of a rule, one must define 
what possible, values the bounds B and B' described above can take. Let us 
suppose that  Ai has m distinct ordered values vt .... , Vr~ observed in Ex. One 
solution, similar to one used in AQ, is to define the possible set Bi of bounds for 
co~tdi as Bi = { v l ,  ..., Vm}. 

Another solution, which has been used in the following, is to define Bi as 

vl + v2 vm-a + vm, 
Bi +c0} 

2 ' " "  2 

which is similar to one approach used for finding thresholds in decision trees 
algorithms, but here, no statistical techniques are used: the learning process 
will select itself the proper bounds in Bi.  

3 S I A  M a i n  A l g o r i t h m s  

3.1 Learning Algorithm Overview 

The SIA basic learning algorithm is somewhat similar to the AQ algorithm be- 
cause it uses a seed example ex as a start point, and tries to find the most 
optimal rule that  covers this example using generalization. One important dif- 
ference between the two methods is that  SIA uses a genetic based search: 

1. Let T~ be an empty set of rules, 

2. Label "uncovered" all classes in the class lists of all examples in Ez ,  
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3. Let ex = (e,CL,W) be an example of E x  such that there exists a class 
Ci E CL labelled "uncovered". 

4. Let Rinit be the most specific rule that matches ex and concludes "Class  = 
Ci", 

5. Using a GA, generalize the condition part of R~nit to find the optimal 
rule(s) R* that match(es) ex (rules that maximize the rule evaluation cri- 
terion Cq(R)), 

6. Label "covered" all classes Ci in the class list of examples matched by R* 
rule(s), 

7. Add R* to 7~, 

8. If some examples remain such that a class in their class list is labelled 
"uncovered", then go to 3, 

9. Possibly, eliminate rules in 7~ using the rule filtering algorithm, 

10. Ouput T~ 

In step 4, the Rinlt rule is computed as follows: the symbolic conditions 
of R~ni~ are of the form "A. ei". t = The numeric conditions are of the form 
" B  <_ Ai ~_ B "  where B and B r are the closest lower and upper bounds to ei in 
Bi. However, if the value of Ai is undefined for ex, the corresponding condition 
condi in Rinlt is set to " , " :  the algorithm must learn a rule that classifies ez 
without using the missing attribute Ai. 

The behavior of the algorithm is illustrated in a simple case on figure 1: two 
attributes Aa and A2 define an example space where the examples can belong 
to the classes "+" or .... 

This algorithm ensures the completeness of 7~ over Ex, if the rule filtering 
step 9 is ommitted. No mechanism is used to choose the seed example in step 3: 
SIA is sensitive to the order of the examples, unless every example is selected as 
a seed in steps 3 and 8. 

3.2 Genetic based Rule Discovery Process: SIA approach  

The genetic search process of step 5 in the SIA main algorithm tries to find 
rules that maximize Cq(R) by generalizing the condition part of the starting 

rule Rini~. According to the GA principles (Holland 1975), this process uses a 
population P of rules to perform a probabilistic parallel search in the rule space. 
The search process generates rules using genetic operators, which here are based 
on generalization. The population P is initially empty and has a maximum size 
of 50 rules. The-search process is the following one: 

1. Let P = 0, 

2. Generate one or two rules by choosing an operator to apply among: 
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Figure 1: (a) SIA chooses an initial example of class "+", and (b) generalizes 
Rini, to find R*. Then (c), it starts on again with another uncovered example 
of class "-". 
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(a) creation (probability of 10 %): generalize Rinit into an offspring rule 
R'. Evaluate Cq(R O. Apply the insertion operator to R< 

(b) generalization (80 %): select randomly one rule R in P and generalize 
its condition part to generate R'. Evaluate Cq(R 0. IfCq(R') > Cq(R) 
then R ~ replaces R in P,  else apply the insertion operator to R ~. 

(c) crossover (10 %): select randomly two rules R1 and R2 in P. Apply a 
uniform crossover operator to obtain two offsprings R~ and R~. Eval- 
uate Cq(R~) and Cq(R~), and apply to them the insertion operator. 

3. Termination criterion: if step 2 has been repeated for more than Nbmaz 
times without generating a better rule R' than the best rule in P t.J Rinit, 
then Stop and output the rule(s) R* of PO Rinit that maximize(s) Cq(R), 
else go to 2. 

where Nbma, is given by the domain expert or user. 
The creation operator (point 2a) introduces new start points in the search 

space and is applied with a probability greater than 10% at the beginning of the 
search. 

The generalization operator (point 2b and partially in 2a) generalizes ran- 
domly some conditions of a selected rule R. For instance, a condition "Ai "- 
value", where Ai is a symbolic attribute, is generalized to " ," .  A condition 
"Bk < Ai < Bl", k < l, where Ai is a numerical attribute is generalized to 
" n  i m k-k < Ai < Bl+l," where Bk-k,,Bt+t, ~ Bi, or can also be generalized to 
"*". R' may replace R in order to avoid following too many times the same path 
in the search space. 

The uniform crossover operator (point 2c) exchanges conditions between two 
selected rule R1 and R2, with a probability Pc = 0.5, which generates two off- 
springs. The aim of the crossover is to exchange building blocks between rules. 

The insertion operator is used to insert an offspring rule R' in P: if R'  E P 
then R ~ is not inserted. If IPI < 50 then R ~ is added to P, else, R ~ replaces the 
lowest strength rule Rto~o in P if Cq(R') > Cq(R~o~). 

This optimization process stops when no betSer rules where generated during 
the last Nbmax rule generations. It may find multiple (and different) optimal 
rules because SIA has no way to choose between several optimal rules (unless 
the expert gives a more precise criterion). The search may be intensive if Nbmax 
is high. Generated rules always match the seed example ex and have the same 
conclusion part as Rinit. 

Rule  Evalua t ion  Cr i te r ion  Cq. Each rule R is assigned a quality or strength 
value Cq(R) which evaluates R quality in the following way: 

{ Cq(R) = 
C $ 1 Z e  

G(R)  > o 

where o~ > 0, fl = 0 or - 0.001 or "4- 0.001 and where 

�9 c is the total weight of the examples that R classifies correctly, 
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�9 n c  is the total weight of the examples that R misclassifies, 

�9 g is an abstract measure of R generality, which takes values between 0 and 
1 :0  means that R is very specific, 1 that R is very general. Intermediate 
values of g are computed by measuring the proportion of attributes not 
taken into account in R condition part, 

�9 e s i z e  is the total weight of the examples in E x  that belong to class Ci (the 
concept totM weight or size). 

The strength of a rule is high if this rule classifies correctly many examples and 
misclassifies as few examples as possible. 

This evaluation criterion has several interesting properties: 

1. it ensures the expert that learned rules accuracies ( ~ ) ,  if there are no 
missing values introducing irreductible errors, is above 1-~'da" A short proof 
of this is the following one: the rule Ri,it has a strength above 0 because it 
classifies (correctly) one example only. Thus, succeeding optimal rules will 
have a strength above Cq(Ri,i~), and also greater than 0. This implies, 
as/~ is chosen small enough so that fig is negligible compared to c - a nc ,  

that these rules will verify c - ~ n c  >_ 0, which can be rewritten as follows: 

C Ol 
A c c u r a c y ( R )  = ~ > 

c + n c -  1 - t - a  

. 

. 

The domain expert can thus ask SIA for consistent rules (a > lEvi), or 
relax this constraint by asking for rules with, for instance, a minimum of 
98% accuracy (with a = 50). To deal efficiently with noise and find a good 
value for a, the expert should have a rough idea of the noise percentage in 
its data. 

it can guide the search process either towards specific or general rules 
expressions with ~3 = -0.001 or j3 = +0.001 respectively (see figure 2). If 
the expert wants to favor the generality of the learned rules instead of their 
consistency,/~ can be increased, but the property described above may not 
hold any more. 

it makes a difference between noise and concept boundaries : in the sit- 
uation (a) of figure 3, the "-" example is considered like noise and SIA, 
with a = 1 for instance, learns R1 because C q ( R 1 )  > C q ( R 2 ) .  In situation 
(b), the "-" example is not considered like noisy but like belonging to the 
concept boundary, and SIA learns R1 and not R2. 

This criteria can also be customized. 

SIA Versus Michigan and  P i t t  Approaches .  Two approaches to genetic 
based rule learning exist, known as the Michigan and Pitt approaches. In the Pitt 
approach (Grefenstette 1989) (Janikow 1992), a genetic entity of the population 
is a rule set of N rules, which strength is a measure of the N rules performance. 
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Figure 2: SIA can learn rules with most specific (3 = -0.001) or most general 
(3 - +0.001) expression. 
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Figure 3: The rule evaluation criterion C~(R) makes a difference between noise 
(a) (see the position of the "-" example) and concept boundary (b). SIA learns 
R1 and not R2 (for a = 1) in both cases. 
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Genetic approaches Search space size 
Pitt N kfvaz+D" 

Michigan,' '" k(val + 1) n 
SIA 2 n 

Table 1: Search space size for different genetic learning approaches, where N is 
the number of rules per entity in the Pitt approach, k the number of classes, 
n the number of attributes and val the number of values per attributes (for 
symbolic attributes and one class per example). 

Thus, this approach performs a global optimization of a set of N rules, and 
learns a set of well co-adapted rules. However, the genetic search space is very 
large and the value of N must be known in advance. 

In the Michigan approach, a genetic entity is one rule, and the GA searches 
for a subpopulation of efficient rules (Wilson 1987). The genetic search space is 
thus reduced. 

In the SIA approach, a genetic entity is a rule, but the GA searches for one 
rule only among the possible generalizations of an example. Thus, in the case 
of supervised learning, the most positive aspect of the SIA approach, compared 
to the Michigan and Pitt approaches, is that it reduces drastically the genetic 
search space (see table 1), even if several searches must be performed if several 
rules are to be learned. 

3.3 Rule  Fi l te r ing  Algor i thm 

This algorithm is a kind of rules postprocessing method which eliminates fastly 
some redundant rules in a set of rules T~. For every rule R E 7~, it computes R 
internal strength (Venturini 1992), denoted s trengthl (R) ,  which measures how 
useful R is with respect to the other rules of 7~. Then, rules with an internal 
strength below a given threshold T~tr can be deleted: 

1. Let s trengthz(R)  = 0 for all rules R E T~, 

2.  For every example ez = (e, CL, w) of Ex do 

(a) Let M be the set of rules that matches ez and R* the subset ~f rules 
in M that have the highest strength Cq(R*) 

(b) Let s t rength i (R)  = strength1(R) + w for rules R of R*. 

3. Let s t reng th t (R  ) = ,,re,~th~(R) for all rules R, (c+ nc is the total weight 
of the examples that R matches) 

4. Remove every rule R from T~ such that strength1(R) < Tstr, where T, tr is 
given by the expert. 
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If T, tr = 0, ~ completeness over Ex  is kept. If T, tr > 0, this completeness 
constraint may be relaxed. 

One interesting property of this algorithm is that its complexity is linear with 
the number of rules and examples. The experimental results of section 4 show 
that  it reduces significantly the number of rules, and most of the time, increases 
the rules classification accuracy on unseen cases. 

Several other methods could be used as well, like the rule elimination algo- 
r i thm Quinlan uses when extracting rules from decision trees (Quinlan 1987). 

3.4 C lass i f i ca t ion  P r o c e d u r e  

The aim of the classification procedure is to decide, with a set of rules 7~, to 
which classes a new unseen example ex = (e, ?, w) belongs to. 

Firstly, a rule-example distance d(R, ex), similar to the one used in (Salzberg 
1991), is defined in the following way 

i = 1  

where: 

�9 for a symbolic attribute Ai, di = 0 if the condition condi of R is true for 
e, else di = 1, 

�9 for a numeric attribute Ai, di = 0 if the condition condi of R is true else: 

- if ei > B'  then dl = ei-B' maxi--rnini 

- else if e~ < B then di = B-e, maxi--l'nini 

where eondi = " B  < Ai < i f " ,  mini and maxi are the minimum and 
maximum values of Ai in Ex  (if di > 1 then di = 1) 

�9 n(R)  is the number of conditions in R which are different than "*" 

If d(R, ex) = 0 then R matches ex (as explained in section 2.2.1), else d(R, ex) 
computes a partial match score between R and ex. 

The decision procedure computes this distance for every rules of 7~. Let 
drain be the minimal distance measured. Let R* be the set of rules such that  
d(R*, ex) = drain and which have the highest value of Cq(R): ex belongs to 
the classes on which R* rules conclude. This measure separates the example 
space with boundaries made of straight lines and parabols (see Salzberg work). 
Here, several classes can be given to an example, like "dog" and "mammal"  for 
instance. 
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3.5 Complex i ty  

Giving an interesting and useful bound for the time complexity of SIA genetic 
search process is difficult. The worst case analysis (for symbolic attributes and 
example belonging to several classes) supposes that the search process, starting 
from the rule R/,it, generates the 2 n possible rules. Further more, it supposes 
that better rules appear only at the cycle before the deadline of Nb~,~ cycles, 
which give a maximum of 2nNbma, rule evaluations. It then supposes that a 
new search process starts for every example of Ex and for every classes it belongs 
to, which gives a worst case complexity of 2nNbma,]Ezlk rule evaluations, or 
2nNbma~lEz[2nk tests of the form "Ai -- value" (where k is the number of 
classes, n the number of attributes). 

However, for learning the F20 problem described in the next section with 800 
examples, the worst number of rule evaluations would be 1012 , and in reality, 
SIA evaluates 1.3 l0 s rules which is about 7.7 10 r times less. 

4 E v a l u a t i o n s  

Two evaluations have been performed with a > [Ex[, T, tr = 0, /3 = +0.001 
(consistent, complete and most general rules), and Nbmaz = 600 cycles. 

4.1 Robo t s  Domain  

This learning task comes from (Wnek and Michalski 1991). It consists of learn- 
ing independently five different concepts (robot descriptions) from 6 attributes 
taking less than 4 values each. The number of all possible robot descriptions is 
432 and the concepts to be learned are described in a logic way: for instance, 
concept C1 is "head is round and jacket is red or head is square and is holding a 
balloon", where "head", "jacket" and "holding" are attributes. Thus, the learn- 
ing task is easier for systems that learn rules described in the same language as 
the concept description language like AQ15, AQ17-IICI or SIA, than for systems 
like CFS (a classifier system), neural networks or decision trees (C4.5), which use 
a different representation. The experiment starts with a training set containing 
6% of the whole set of positive examples and 3% of the whole set of negative 
examples of concept C1, and goes up to (100%,10%). This process is repeated 
from concept C2 to C5. SIA learns rules for the positive class only, which is an 
ability common to AQ15 and AQ17-IICI. The evalution procedure evaluates the 
learned rules with an exact error rate on the whole set of possible descriptions. 
Results obtained without the rule filtering algorithm are given in table 2. 

SIA performances, which were averaged over five runs, are comparable to or 
even higher than AQ17-ttCI performances for this learning task. 

4.2 F20 Multipexor Learning Task 

This task is a boolean function learning task. The first n bits of a boolean input 
vector are used to select one of the 2 n remaining bits of the vector. If the selected 
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CFS 
' NNets 

percentage of pos. and neg. training examples 

AQ15 

(6%,3%) 
21.3% 

(10%,10%) 
20.3% 

(15%,10%) 
22.5% 

(25%,10%) 
19.7 % 
7.S% 

(100%,10%) 
16.3% 

9.7% 6.3 % ! 4.7 % 4.8 % 
C4.5 ' 9'.7% 8.3 % 1.3 % 2.5% 1.6 % 

22.8% 5.0 % 4:8 % 0.0% 
0.0% 
0.0% 

1.2 % 
0.4 % 

1.2% 
0.0% 
0.0% 

4,8 % 
7.8 % 

AQI7-HCI 
SIA 

0.0% 
0.0% 

Table 2: Robots domain: average error rate for different learning methods from 
(Wnek and Michalski 1991) and SIA error rate 

bit equals 0 then, the vector class is 0, else it is 1. The problem studied here is 
F20 where 4 bits select one of the 16 remaining bits, for a total of 20 boolean 
attributes. The learning and evaluation methodologies used are the same as 
those used by Quinlan for C4.5 (Quinlan 1988): a training set of examples is 
randomly generated with a test set of 1000 unseen cases. The evaluation of the 
learned rules is performed with these unseen cases and all runs are repeated five 
times. The averaged results are reported on table 3. 

Above 400 examples, SIA outperforms the decision tree algorithm, but not 
the rule extraction procedure associated to it. SIA learns much more rules than 
C4.5, firstly because, unlike C4.5, SIA learns classes 0 and 1 (which doubles at 
least the number of rules), and secondly because the multiplexor learning task 
has the characteristic that several rules with equal generality can represent the 
same portion of the examples space. As mentioned before, SIA discovers all 
possible (among the most general and consistent) concept descriptions, and the 
postprocessing algorithm does not eliminate all redundancy in rules, even if it 
may improve globally their performances. For 800 examples, SIA learned rules 
are comparable to the rules extracted from C4.5 decision trees. When searching 
for one rule (for 800 examples), SIA explores about 0.13 % of the possible 22G 
generalizations. 

However, the execution time is one hour on a Sun Sparc Elc (for 800 exam- 
ples), which is certainly much longer than what C4.5 and the rule extraction 
procedure would need. 

5 Appl ica t ion  

SIA has been initially designed for a data analysis task in the french justice 
domain. A domain expert, Bruno Aubusson de Cavarlay 1, has described 1250 
french justice files using 100 attributes. These files have a variable length (some 

1 Bruno Aubusson de Cavarlay works at  the Centre de Recherches Sociologlques sur  le Droit 
et les Inst i tu t ions  P~nales (CESDIP), URA 313 du CNRS, Minist~re de la Justice, 4 rue de 
Mondonvi,  75001 Paris FRANCE 
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e x .  

200 
400 
600 
800 

C4.5 
D. Trees 

# nodes % accu. 
49.0 68.8 % 
95.8 82.1% 
121.0 87.4 % 
171.4 92.4 % 

# ex. # eval. 
200 90000 
400 131000 
600 160000 

'800 130000 

Rules 
# rules % accu. 

8.6 69.2 % 
14.4 88.0 % 
16.2 97.4 % 
18.4 98.3 % 

SIA 
before tilt. 

# rules % accu. 
62 60.7 % 

93.8 78.8 % 
95.2 9o.8 % 
89.4 97.1% 

After tilt. 
# rules % accu. 

53.6 60.4 % 
78.4 79.2 % 
73.8 91% 
66.2 98.3 % 

Table 3: Results for F20: " #  ex." is the number of training examples, "% accu." 
is the learned rule accuracy (percentage of correctly classified unseen examples), 
"#  eval" is the mean number of rules SIA has evaluated 

attributes are undefined), because, for instance, no culprit may be found for a 
given file, and thus the attributes about culprits are undefined for these files. 
The aim of the expert is, for instance, to analyse how the french law is applied 
in reality (Aubusson de Cavarlay 1987a) (Aubusson de Cavarlay 1987b). Each 
attribute has roughly 20 values. The rule space is thus very ]arge (at least 
2110o). Examples are weighted to recreate the real domain probabilites. This 
task is currently under study and several problems appear, like for instance: 
some concepts are described with a very small number of examples (2 or 3 for 
instance) in a huge description space, or, some attributes values are redundant 
(they code differently the same information), which leads SIA to find rules that 
underline these dependancies instead of some more interesting ones. 

6 C o n c l u s i o n  

This study has tried to show that genetic algorithms can be useful tools for 
supervised inductive learning. The resulting algorithm, SIA, reduces the rule 
search space by searching rules one at a time. It can learned rules from examples 
that may be described with a variable number of attributes and that may have 
multiple classes. SIA learning abilities are comparable to those of other heuristic 
based algorithms, as well as the experimental resultsobtained on two learning 
tasks. However, SIA learning times are still important compared to the decision 
trees or AQ based methods. SIA is currently applied to the analysis of the 
complex french justice domain. 

The work presented here is a beginning. Many theoretical points must be 
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studied such as incrementality, introduction of more background knowledge and 
learnability results. Also, further evaluations and comparisons are needed in 
order to evaluate all properties of SIA, like dealing with noisy data and missing 
values. 
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