
www.manaraa.com

SIA: a Supervised Inductive Algorithm with Genetic
Search for Learning Attributes based Concepts

Gilles Venturini

Equipe Inference et Apprentissage

Laboratoire de Recherche en Informatique, bat. 490

Universit~ de Paris-Sud

91405 Orsay Cedex, FRANCE.

emaih vent uri~lri.lri.fr

Abst rac t . This paper describes a genetic learning system called SIA,
which learns attributes based rules from a set of preclassified examples.
Examples may be described with a variable number of attributes, which
can be numeric or symbolic, and examples may belong to several classes.
SIA algorithm is somewhat similar to the AQ algorithm because it takes an
example as a seed and generalizes it, using a genetic process, to find a rule
maximizing a noise tolerant rule evaluation criterion. The SIA approach to
supervised rule learning reduces greatly the possible rule search space when
compared to the genetic Michigan and Pitt approaches. SIA is comparable
to AQ and decision trees algorithms on two learning tasks. Furthermore,
it has been designed for a data analysis task in a large and complex justice
domain.

1 In t roduc t ion

Learning rules in propositional logic from a set of preclassified examples de-
scribed in an at tr ibute/value based language is a problem well known and stud-
ied in Machine Learning (Gums and Lavrac 1987). One reason for that is the
fact that in many domains, events or experiences can be easily described using
a set of variables or attributes.

Among the many existing algorithms that solve this problem, one can point
out, on one hand, some methods that use heuristics to search the rule space.
For instance, the ID3-based algorithms learn decision trees involving attributes
which are relevant from an information theory point of view (Quinlan 1986).
Rules can then be extracted from decision trees, a process which usually increases
the system classification accuracy (Quinlan 1987). Another example is the AQ
algorithms, which learn rules using the heuristic star algorithm (Michalski et al
1986) (Wnek and Michalski 1991).

On the other hand, some methods use stochastic algorithms (Kononenko
and Kovacic 1992) or genetic algorithms (Holland 1975) to find optimal rules.

www.manaraa.com

281

Examples of such algorithms are the classifier systems, which usually learn rules
(classifiers) from examples that are not preclassified (Goldberg 1989) (Wilson
1987) (Venturini 1992), but which can also learn from preclassified examples
(McCallum and Spackman 1990) (Bonelli and Parodi 1991). Other algorithms,
for instance, are the GABIL system (De Jong and Spears 1991) which learns
rules incrementally and the SAMUEL system (Grefenstette 1989)

F,inally, some algorithms use a multistrategic Search, combining heuristic
and probabilistic algorithms. For instance, genetic algorithms, denoted GAs
in the following, can discover important attributes in cooperation with an AQ
based algorithm (Vafaie and DeJong 1991), or, GAs can improve and refine
rules learned by an AQ algorithm, using a subpart of the set of examples (Bala,
DeJong and Pachowicz 1991).

The genetic based rule searching algorithms mentioned above have a longer
execution time than the heuristics methods. They also have fewer learning abil-
ities: for instance, they do not handle easily numeric attributes because the
classifier system rule description language is too simple, or because the GABIL
method of encoding all possible values would lead to very long rules in the case
of real-valued attributes. Furthermore, it has been recently shown (Wnek and
Michalski 1991) that a genetic rule learning system, namely the classifier system
CFS of Riolo, obtains the lowest performances among other learning methods,
on a simple, noise free learning task:

Thus, one motivation for this work is the building of a GA based learning
method that would be globally equivalent, with respect to performances and
learning abilities, to the heuristic based methods mentioned above. Furthermore,
this work is also motivated by a real world data analysis task in a complex
domain which would not be easily handled by the methods mentioned above. The
main reasons for this are that attributes are numeric or symbolic, examples are
described using a variable number of attributes (mainly because some attributes
may be undefined for some examples), and may belong to several classes.

In the following, section 2 describes SIA example and rule representations.
Section 3 describes the main learning algorithm, the rule filtering algorithm, the
classification procedure chosen and their main properties. Section 4 shows two
evaluations of SIA on common learning tasks and section 5 describes the real
task for which SIA has been designed. Section 6 concludes on this and future
work.

2 E x a m p l e a n d R u l e R e p r e s e n t a t i o n

2,1 Examples with Undefined Attributes, Multiple Classes and Weights

SIA learns production rules from a set E z of examples of events in a given
domain. An example ex is described using n attributes A1,..., Am, which can be
either numeric (real-valued for instance) or symbolic (with discrete values).

Firstly, it is considered that k attributes are defined for all examples and
that the remaining n - k attributes may be n n d e f i n e d for some examples. For
instance, suppose that cars are being described using the attributes n u m b e r -

www.manaraa.com

282

o f - acc idents and date - o f - las t - accident . The attribute date - o f -
last - accident is undefined for cars that were never crashed. This notion of
undefined at t r ibutes includes not only logical cases of undefined values (as in
the car example), but also the noisy cases of missing or unknown attributes
values, and systematic missing values (Weinberg, Biswas and Koller 1992).

Secondly, an example e z may belong to several classes among a set C =
{Cx, ...,C e} of possible classes. For instance, the description of an animal can
belong to the class "dog" and to the class " m a m m a l " . S IA learns a separated
definition of each class.

Finally, examples can be weighted in order to create artificial examples dis-
tributions in Ez . For example, let us suppose that the learning task is to learn
rules about cars. These rules should conclude that a car is s a f e or u n s a f e . Let
us suppose that ~60 of the cars are safe. In order to learn reliable rules, many
car examples must be recorded. Thus, a hundred of safe cars and a hundred of
unsafe cars examples are recorded in Ez . The probability, in E z , of a car to be
safe is now �89 instead of ~0 in the real domain. To recreate the examples original
distribution in Ex , a weight w = 9 should be assigned to safe cars examples,
and a weight w = 1 to unsafe cars examples. These weights introduce biases in
the learning process by making some examples more important than others.

Thus, an example ez is represented as

(e, CL,w)

where e = {el, ..., en} is a vector of attributes values, among which some values
may be undefined, C.~ is the list of classes e z belongs to, and w is the example
weight.

2.2 At t r ib u t e s based R u l e R e p r e s e n t a t i o n

SIA learns a representation of each class in {C1 ,Ck}. For a class Ci, the
representation learned is a set of rules R of the form

R : I F condl A ... A cond~ T H E N C l a s s = Cb , S t r e n g t h
, �9 �9 J Y Y

C o n d i ~ i o n p a r t C o n c l u s i o n p a r t $ t r e n # i h p a r t

In R condition part, condi involves attribute Ai and equals either:

�9 " , ' , meaning that Ai is not taken into account (the condition is always
true), or

�9 "Ai = value" , where Ai is a symbolic attr ibute and value is an observed
value of Ai , or

�9 " B < Ai <_ B TM, where Ai is a numeric attr ibute and where the lower and
upper bounds B and B r are such that B j > B (B and B ~ computation is
detailed in the following).

An example of such a rule is

www.manaraa.com

283

R1 : I F * A date - o f - las t - acc ident = y e s t e r d a y T H E N Class = unsafe

Using this rule condition format, a matching operator between a rule R and
an example e z can be defined: R matches the example ex = (e ,CL, w) if all R
conditions are true for vector e. If ez has an undefined or missing value for an
attribute Ai , it can be matched by R only if Ai is not taken into account by R
conditions (eondl = *). For instance, the event " n u m b e r - o f - acc iden t s =

0 A date - o f - last - acc iden t = u n d e f i n e d " can not be matched by R1.
The conclusion part concludes that an example ez = (e, CL, w), matched by

R, belongs to class Ci. If ez really belongs to class Ci (i.e. Ci E CL), then ez is
said to be correctly classified by R, else ez is misclassified.

The strength part of R is a set of coefficients that are used to measure the
quality of R by computing a quality criterion C~ (R) (see section 3). The higher
C q (R) is, the more interesting R is. The value of this criterion represents the
genetic strength of the rule that the genetic search will try to maximize.

This rule description language is thus slightly less powerful than the one use
in AQ, because, for instance, a disjunction of conditions for the same class, is
coded by several rules rather than by just one rule.

Poss ib le B o u n d s for N u m e r i c C o n d i t i o n s . When a numeric attribute Ai is
involved in the condition condi of the condition part of a rule, one must define
what possible, values the bounds B and B' described above can take. Let us
suppose that Ai has m distinct ordered values vt , Vr~ observed in Ex. One
solution, similar to one used in AQ, is to define the possible set Bi of bounds for
co~tdi as Bi = { v l , ..., Vm}.

Another solution, which has been used in the following, is to define Bi as

vl + v2 vm-a + vm,
Bi +c0}

2 ' " " 2

which is similar to one approach used for finding thresholds in decision trees
algorithms, but here, no statistical techniques are used: the learning process
will select itself the proper bounds in Bi.

3 S I A M a i n A l g o r i t h m s

3.1 Learning Algorithm Overview

The SIA basic learning algorithm is somewhat similar to the AQ algorithm be-
cause it uses a seed example ex as a start point, and tries to find the most
optimal rule that covers this example using generalization. One important dif-
ference between the two methods is that SIA uses a genetic based search:

1. Let T~ be an empty set of rules,

2. Label "uncovered" all classes in the class lists of all examples in Ez ,

www.manaraa.com

284

3. Let ex = (e,CL,W) be an example of E x such that there exists a class
Ci E CL labelled "uncovered".

4. Let Rinit be the most specific rule that matches ex and concludes "Class =
Ci",

5. Using a GA, generalize the condition part of R~nit to find the optimal
rule(s) R* that match(es) ex (rules that maximize the rule evaluation cri-
terion Cq(R)),

6. Label "covered" all classes Ci in the class list of examples matched by R*
rule(s),

7. Add R* to 7~,

8. If some examples remain such that a class in their class list is labelled
"uncovered", then go to 3,

9. Possibly, eliminate rules in 7~ using the rule filtering algorithm,

10. Ouput T~

In step 4, the Rinlt rule is computed as follows: the symbolic conditions
of R~ni~ are of the form "A. ei". t = The numeric conditions are of the form
" B <_ Ai ~_ B " where B and B r are the closest lower and upper bounds to ei in
Bi. However, if the value of Ai is undefined for ex, the corresponding condition
condi in Rinlt is set to " , " : the algorithm must learn a rule that classifies ez
without using the missing attribute Ai.

The behavior of the algorithm is illustrated in a simple case on figure 1: two
attributes Aa and A2 define an example space where the examples can belong
to the classes "+" or

This algorithm ensures the completeness of 7~ over Ex, if the rule filtering
step 9 is ommitted. No mechanism is used to choose the seed example in step 3:
SIA is sensitive to the order of the examples, unless every example is selected as
a seed in steps 3 and 8.

3.2 Genetic based Rule Discovery Process: SIA approach

The genetic search process of step 5 in the SIA main algorithm tries to find
rules that maximize Cq(R) by generalizing the condition part of the starting

rule Rini~. According to the GA principles (Holland 1975), this process uses a
population P of rules to perform a probabilistic parallel search in the rule space.
The search process generates rules using genetic operators, which here are based
on generalization. The population P is initially empty and has a maximum size
of 50 rules. The-search process is the following one:

1. Let P = 0,

2. Generate one or two rules by choosing an operator to apply among:

www.manaraa.com

285

A2

-I- -I-
[-~"]+

Rinit

(a)

i i

v

A1

A2
R*

o "

.i. o:i.. -~176
+ ~ + . .

Co)

v

A1

A2

+

+

i
b

I
q "% -I- "

"1- "- :
m~ t m

�9 I

o o
. , , o ~

A1
(c)

Figure 1: (a) SIA chooses an initial example of class "+", and (b) generalizes
Rini, to find R*. Then (c), it starts on again with another uncovered example
of class "-".

www.manaraa.com

286

(a) creation (probability of 10 %): generalize Rinit into an offspring rule
R'. Evaluate Cq(R O. Apply the insertion operator to R<

(b) generalization (80 %): select randomly one rule R in P and generalize
its condition part to generate R'. Evaluate Cq(R 0. IfCq(R') > Cq(R)
then R ~ replaces R in P, else apply the insertion operator to R ~.

(c) crossover (10 %): select randomly two rules R1 and R2 in P. Apply a
uniform crossover operator to obtain two offsprings R~ and R~. Eval-
uate Cq(R~) and Cq(R~), and apply to them the insertion operator.

3. Termination criterion: if step 2 has been repeated for more than Nbmaz
times without generating a better rule R' than the best rule in P t.J Rinit,
then Stop and output the rule(s) R* of PO Rinit that maximize(s) Cq(R),
else go to 2.

where Nbma, is given by the domain expert or user.
The creation operator (point 2a) introduces new start points in the search

space and is applied with a probability greater than 10% at the beginning of the
search.

The generalization operator (point 2b and partially in 2a) generalizes ran-
domly some conditions of a selected rule R. For instance, a condition "Ai "-
value", where Ai is a symbolic attribute, is generalized to " ," . A condition
"Bk < Ai < Bl", k < l, where Ai is a numerical attribute is generalized to
" n i m k-k < Ai < Bl+l," where Bk-k,,Bt+t, ~ Bi, or can also be generalized to
"*". R' may replace R in order to avoid following too many times the same path
in the search space.

The uniform crossover operator (point 2c) exchanges conditions between two
selected rule R1 and R2, with a probability Pc = 0.5, which generates two off-
springs. The aim of the crossover is to exchange building blocks between rules.

The insertion operator is used to insert an offspring rule R' in P: if R' E P
then R ~ is not inserted. If IPI < 50 then R ~ is added to P, else, R ~ replaces the
lowest strength rule Rto~o in P if Cq(R') > Cq(R~o~).

This optimization process stops when no betSer rules where generated during
the last Nbmax rule generations. It may find multiple (and different) optimal
rules because SIA has no way to choose between several optimal rules (unless
the expert gives a more precise criterion). The search may be intensive if Nbmax
is high. Generated rules always match the seed example ex and have the same
conclusion part as Rinit.

Rule Evalua t ion Cr i te r ion Cq. Each rule R is assigned a quality or strength
value Cq(R) which evaluates R quality in the following way:

{ Cq(R) =
C $ 1 Z e

G(R) > o

where o~ > 0, fl = 0 or - 0.001 or "4- 0.001 and where

�9 c is the total weight of the examples that R classifies correctly,

www.manaraa.com

287

�9 n c is the total weight of the examples that R misclassifies,

�9 g is an abstract measure of R generality, which takes values between 0 and
1 :0 means that R is very specific, 1 that R is very general. Intermediate
values of g are computed by measuring the proportion of attributes not
taken into account in R condition part,

�9 e s i z e is the total weight of the examples in E x that belong to class Ci (the
concept totM weight or size).

The strength of a rule is high if this rule classifies correctly many examples and
misclassifies as few examples as possible.

This evaluation criterion has several interesting properties:

1. it ensures the expert that learned rules accuracies (~) , if there are no
missing values introducing irreductible errors, is above 1-~'da" A short proof
of this is the following one: the rule Ri,it has a strength above 0 because it
classifies (correctly) one example only. Thus, succeeding optimal rules will
have a strength above Cq(Ri,i~), and also greater than 0. This implies,
as/~ is chosen small enough so that fig is negligible compared to c - a nc ,

that these rules will verify c - ~ n c >_ 0, which can be rewritten as follows:

C Ol
A c c u r a c y (R) = ~ >

c + n c - 1 - t - a

.

.

The domain expert can thus ask SIA for consistent rules (a > lEvi), or
relax this constraint by asking for rules with, for instance, a minimum of
98% accuracy (with a = 50). To deal efficiently with noise and find a good
value for a, the expert should have a rough idea of the noise percentage in
its data.

it can guide the search process either towards specific or general rules
expressions with ~3 = -0.001 or j3 = +0.001 respectively (see figure 2). If
the expert wants to favor the generality of the learned rules instead of their
consistency,/~ can be increased, but the property described above may not
hold any more.

it makes a difference between noise and concept boundaries : in the sit-
uation (a) of figure 3, the "-" example is considered like noise and SIA,
with a = 1 for instance, learns R1 because C q (R 1) > C q (R 2) . In situation
(b), the "-" example is not considered like noisy but like belonging to the
concept boundary, and SIA learns R1 and not R2.

This criteria can also be customized.

SIA Versus Michigan and P i t t Approaches . Two approaches to genetic
based rule learning exist, known as the Michigan and Pitt approaches. In the Pitt
approach (Grefenstette 1989) (Janikow 1992), a genetic entity of the population
is a rule set of N rules, which strength is a measure of the N rules performance.

www.manaraa.com

288

A2

I: :1
1~=-o.oo~

13=+0.001

m m

m B

A1

Figure 2: SIA can learn rules with most specific (3 = -0.001) or most general
(3 - +0.001) expression.

+

+ +

+ +

+ +
R1

m

R1 R2

(a) (b)

Figure 3: The rule evaluation criterion C~(R) makes a difference between noise
(a) (see the position of the "-" example) and concept boundary (b). SIA learns
R1 and not R2 (for a = 1) in both cases.

www.manaraa.com

289

Genetic approaches Search space size
Pitt N kfvaz+D"

Michigan,' '" k(val + 1) n
SIA 2 n

Table 1: Search space size for different genetic learning approaches, where N is
the number of rules per entity in the Pitt approach, k the number of classes,
n the number of attributes and val the number of values per attributes (for
symbolic attributes and one class per example).

Thus, this approach performs a global optimization of a set of N rules, and
learns a set of well co-adapted rules. However, the genetic search space is very
large and the value of N must be known in advance.

In the Michigan approach, a genetic entity is one rule, and the GA searches
for a subpopulation of efficient rules (Wilson 1987). The genetic search space is
thus reduced.

In the SIA approach, a genetic entity is a rule, but the GA searches for one
rule only among the possible generalizations of an example. Thus, in the case
of supervised learning, the most positive aspect of the SIA approach, compared
to the Michigan and Pitt approaches, is that it reduces drastically the genetic
search space (see table 1), even if several searches must be performed if several
rules are to be learned.

3.3 Rule Fi l te r ing Algor i thm

This algorithm is a kind of rules postprocessing method which eliminates fastly
some redundant rules in a set of rules T~. For every rule R E 7~, it computes R
internal strength (Venturini 1992), denoted s trengthl (R) , which measures how
useful R is with respect to the other rules of 7~. Then, rules with an internal
strength below a given threshold T~tr can be deleted:

1. Let s trengthz(R) = 0 for all rules R E T~,

2. For every example ez = (e, CL, w) of Ex do

(a) Let M be the set of rules that matches ez and R* the subset ~f rules
in M that have the highest strength Cq(R*)

(b) Let s t rength i (R) = strength1(R) + w for rules R of R*.

3. Let s t reng th t (R) = ,,re,~th~(R) for all rules R, (c+ nc is the total weight
of the examples that R matches)

4. Remove every rule R from T~ such that strength1(R) < Tstr, where T, tr is
given by the expert.

www.manaraa.com

290

If T, tr = 0, ~ completeness over Ex is kept. If T, tr > 0, this completeness
constraint may be relaxed.

One interesting property of this algorithm is that its complexity is linear with
the number of rules and examples. The experimental results of section 4 show
that it reduces significantly the number of rules, and most of the time, increases
the rules classification accuracy on unseen cases.

Several other methods could be used as well, like the rule elimination algo-
r i thm Quinlan uses when extracting rules from decision trees (Quinlan 1987).

3.4 C lass i f i ca t ion P r o c e d u r e

The aim of the classification procedure is to decide, with a set of rules 7~, to
which classes a new unseen example ex = (e, ?, w) belongs to.

Firstly, a rule-example distance d(R, ex), similar to the one used in (Salzberg
1991), is defined in the following way

i = 1

where:

�9 for a symbolic attribute Ai, di = 0 if the condition condi of R is true for
e, else di = 1,

�9 for a numeric attribute Ai, di = 0 if the condition condi of R is true else:

- if ei > B' then dl = ei-B' maxi--rnini

- else if e~ < B then di = B-e, maxi--l'nini

where eondi = " B < Ai < i f " , mini and maxi are the minimum and
maximum values of Ai in Ex (if di > 1 then di = 1)

�9 n(R) is the number of conditions in R which are different than "*"

If d(R, ex) = 0 then R matches ex (as explained in section 2.2.1), else d(R, ex)
computes a partial match score between R and ex.

The decision procedure computes this distance for every rules of 7~. Let
drain be the minimal distance measured. Let R* be the set of rules such that
d(R*, ex) = drain and which have the highest value of Cq(R): ex belongs to
the classes on which R* rules conclude. This measure separates the example
space with boundaries made of straight lines and parabols (see Salzberg work).
Here, several classes can be given to an example, like "dog" and "mammal" for
instance.

www.manaraa.com

291

3.5 Complex i ty

Giving an interesting and useful bound for the time complexity of SIA genetic
search process is difficult. The worst case analysis (for symbolic attributes and
example belonging to several classes) supposes that the search process, starting
from the rule R/,it, generates the 2 n possible rules. Further more, it supposes
that better rules appear only at the cycle before the deadline of Nb~,~ cycles,
which give a maximum of 2nNbma, rule evaluations. It then supposes that a
new search process starts for every example of Ex and for every classes it belongs
to, which gives a worst case complexity of 2nNbma,]Ezlk rule evaluations, or
2nNbma~lEz[2nk tests of the form "Ai -- value" (where k is the number of
classes, n the number of attributes).

However, for learning the F20 problem described in the next section with 800
examples, the worst number of rule evaluations would be 1012 , and in reality,
SIA evaluates 1.3 l0 s rules which is about 7.7 10 r times less.

4 E v a l u a t i o n s

Two evaluations have been performed with a > [Ex[, T, tr = 0, /3 = +0.001
(consistent, complete and most general rules), and Nbmaz = 600 cycles.

4.1 Robo t s Domain

This learning task comes from (Wnek and Michalski 1991). It consists of learn-
ing independently five different concepts (robot descriptions) from 6 attributes
taking less than 4 values each. The number of all possible robot descriptions is
432 and the concepts to be learned are described in a logic way: for instance,
concept C1 is "head is round and jacket is red or head is square and is holding a
balloon", where "head", "jacket" and "holding" are attributes. Thus, the learn-
ing task is easier for systems that learn rules described in the same language as
the concept description language like AQ15, AQ17-IICI or SIA, than for systems
like CFS (a classifier system), neural networks or decision trees (C4.5), which use
a different representation. The experiment starts with a training set containing
6% of the whole set of positive examples and 3% of the whole set of negative
examples of concept C1, and goes up to (100%,10%). This process is repeated
from concept C2 to C5. SIA learns rules for the positive class only, which is an
ability common to AQ15 and AQ17-IICI. The evalution procedure evaluates the
learned rules with an exact error rate on the whole set of possible descriptions.
Results obtained without the rule filtering algorithm are given in table 2.

SIA performances, which were averaged over five runs, are comparable to or
even higher than AQ17-ttCI performances for this learning task.

4.2 F20 Multipexor Learning Task

This task is a boolean function learning task. The first n bits of a boolean input
vector are used to select one of the 2 n remaining bits of the vector. If the selected

www.manaraa.com

292

CFS
' NNets

percentage of pos. and neg. training examples

AQ15

(6%,3%)
21.3%

(10%,10%)
20.3%

(15%,10%)
22.5%

(25%,10%)
19.7 %
7.S%

(100%,10%)
16.3%

9.7% 6.3 % ! 4.7 % 4.8 %
C4.5 ' 9'.7% 8.3 % 1.3 % 2.5% 1.6 %

22.8% 5.0 % 4:8 % 0.0%
0.0%
0.0%

1.2 %
0.4 %

1.2%
0.0%
0.0%

4,8 %
7.8 %

AQI7-HCI
SIA

0.0%
0.0%

Table 2: Robots domain: average error rate for different learning methods from
(Wnek and Michalski 1991) and SIA error rate

bit equals 0 then, the vector class is 0, else it is 1. The problem studied here is
F20 where 4 bits select one of the 16 remaining bits, for a total of 20 boolean
attributes. The learning and evaluation methodologies used are the same as
those used by Quinlan for C4.5 (Quinlan 1988): a training set of examples is
randomly generated with a test set of 1000 unseen cases. The evaluation of the
learned rules is performed with these unseen cases and all runs are repeated five
times. The averaged results are reported on table 3.

Above 400 examples, SIA outperforms the decision tree algorithm, but not
the rule extraction procedure associated to it. SIA learns much more rules than
C4.5, firstly because, unlike C4.5, SIA learns classes 0 and 1 (which doubles at
least the number of rules), and secondly because the multiplexor learning task
has the characteristic that several rules with equal generality can represent the
same portion of the examples space. As mentioned before, SIA discovers all
possible (among the most general and consistent) concept descriptions, and the
postprocessing algorithm does not eliminate all redundancy in rules, even if it
may improve globally their performances. For 800 examples, SIA learned rules
are comparable to the rules extracted from C4.5 decision trees. When searching
for one rule (for 800 examples), SIA explores about 0.13 % of the possible 22G
generalizations.

However, the execution time is one hour on a Sun Sparc Elc (for 800 exam-
ples), which is certainly much longer than what C4.5 and the rule extraction
procedure would need.

5 Appl ica t ion

SIA has been initially designed for a data analysis task in the french justice
domain. A domain expert, Bruno Aubusson de Cavarlay 1, has described 1250
french justice files using 100 attributes. These files have a variable length (some

1 Bruno Aubusson de Cavarlay works at the Centre de Recherches Sociologlques sur le Droit
et les Inst i tu t ions P~nales (CESDIP), URA 313 du CNRS, Minist~re de la Justice, 4 rue de
Mondonvi, 75001 Paris FRANCE

www.manaraa.com

293

e x .

200
400
600
800

C4.5
D. Trees

nodes % accu.
49.0 68.8 %
95.8 82.1%
121.0 87.4 %
171.4 92.4 %

ex. # eval.
200 90000
400 131000
600 160000

'800 130000

Rules
rules % accu.

8.6 69.2 %
14.4 88.0 %
16.2 97.4 %
18.4 98.3 %

SIA
before tilt.

rules % accu.
62 60.7 %

93.8 78.8 %
95.2 9o.8 %
89.4 97.1%

After tilt.
rules % accu.

53.6 60.4 %
78.4 79.2 %
73.8 91%
66.2 98.3 %

Table 3: Results for F20: " # ex." is the number of training examples, "% accu."
is the learned rule accuracy (percentage of correctly classified unseen examples),
"# eval" is the mean number of rules SIA has evaluated

attributes are undefined), because, for instance, no culprit may be found for a
given file, and thus the attributes about culprits are undefined for these files.
The aim of the expert is, for instance, to analyse how the french law is applied
in reality (Aubusson de Cavarlay 1987a) (Aubusson de Cavarlay 1987b). Each
attribute has roughly 20 values. The rule space is thus very]arge (at least
2110o). Examples are weighted to recreate the real domain probabilites. This
task is currently under study and several problems appear, like for instance:
some concepts are described with a very small number of examples (2 or 3 for
instance) in a huge description space, or, some attributes values are redundant
(they code differently the same information), which leads SIA to find rules that
underline these dependancies instead of some more interesting ones.

6 C o n c l u s i o n

This study has tried to show that genetic algorithms can be useful tools for
supervised inductive learning. The resulting algorithm, SIA, reduces the rule
search space by searching rules one at a time. It can learned rules from examples
that may be described with a variable number of attributes and that may have
multiple classes. SIA learning abilities are comparable to those of other heuristic
based algorithms, as well as the experimental resultsobtained on two learning
tasks. However, SIA learning times are still important compared to the decision
trees or AQ based methods. SIA is currently applied to the analysis of the
complex french justice domain.

The work presented here is a beginning. Many theoretical points must be

www.manaraa.com

294

studied such as incrementality, introduction of more background knowledge and
learnability results. Also, further evaluations and comparisons are needed in
order to evaluate all properties of SIA, like dealing with noisy data and missing
values.

Acknowledgements

I would like to thank Janusz Wnek for providing robots domain data and Bruno
Aubusson de Cavarlay, the french justice expert. I would also like to thank Yves
Kodratoff and the Inference and Learning group for providing useful comments
on this work.

References

Aubusson de Cavarlay B. (1987a), La diversit~ du traitement p4nal, Donndes
sociales 19, 589-593.

Aubusson de Cavarlay B. (1987b), Les fili~res pdnales, CESDIP, D4viance et
ContrSle Social 43.

Bala J., De Jong K.A. and Pachowicz P. (1991), Learning noise tolerant classifi-
cation procedures by integrating inductive learning and genetic algorithms,
Proceedings of the First International Workshop on Multistrategy Learning
1991, R.S. Michalski and G. Tecuci (Eds), 316-323.

Bonelli P. and Parodi A. (1991), An efficient classifier system and its experimen-
tal comparison with two representative learning methods on three medical
domains, Proceedings of the Fourth International Conference on Genetic
Algorithms, R.K. Belew and L.B. Booker (Eds), 288-295, Morgan Kauf-
m a n n .

De Jong K. (1988). Learning with Genetic Algorithms: An overview. Machine
Learning 3, 121-138: Kluwer Academic.

De Jong K. and Spears W.M. (1991), Learning concept classification rules using
genetic algorithms, Proceedings of the 1T h International Joint Conference
on Artificial Intelligence 1991, J. Mylopoulos and R. Reiter (Eds), 651-656,
Morgan Kaufmann.

Gams M. and Lavrac N. (1987), Review of five empirical learning systems
within a proposed schemata, Progress in Machine Learning, I. Bratko and
N. Lavrac (Eds), 46-66, Sigma Press.

Goldberg D.E. (1989). Genetic Algorithms in Search, Optimization and Ma-
chine Learning: Addison Wesley.

Grefenstette J.J. (1989), A system for learning control strategies with genetic al-
gorithms. In Proceedings of the third International Conference on Genetic
Algorithms, J.D. Sehaffer (Ed), 183-190, Morgan Kaufmann.

www.manaraa.com

295

ttolland J.tI. (1975). Adaptation in natural and artificial systems. Ann Arbor:
University of Michigan Press.

Janikow C.Z. (1992), Combining competition and cooperation in supervised
inductive learning, Proceedings of the Ninth International Workshop on
Machine Learning 1992, D. Sleeman and P. Edwards (Eds), 241-248, Mor-
gan Kaufmann.

Kononenko I. and Kovacic M. (1992), Learning as optimization: stochastic
generation of multiple knowledge, Proceedings of the Ninth International
Workshop on Machine Learning 1992, D. Sleeman and P. Edwards (Eds),
257-262, Morgan Kaufmann.

McCallum J.tt. and Spackman K.A. (1990), Using genetic algorithms to learn
disjunctive rules from examples, Proceedings of the Seventh International
Conference on Machine Learning 1990, B.W. Porter and R.J. Mooney
(Eds.), 153-159, Morgan Kaufmann.

Michalski R.S., Mozetic I., tIong J. and Lavrac N. (1986), The multi-purpose in-
cremental learning system AQ15 and its testing application to three medical
domains, Proceedings of AAAI-86 Fifth National Conference on Artificial
Intelligence, 1041-1045, Morgan Kaufmann.

Quinlan J.R. (1986), Induction of decision trees, Machine Learning 1,1.

Quinlan J.R: (1987), Generating production rules from decision trees, Proceed-
ings of the Tenth International Joint Conference on Artificial Intelligence
1987, J. McDermott (Ed), 304-307, Morgan Kaufmann.

Quinlan J.R. (1988), An empirical comparison of genetic and decision trees
classifiers, Proceedings of the Fifth International Conference on Machine
Learning 1988, J. Laird (Eds), 135-141, Morgan Kaufmann.

Salzberg S. (1991), A nearest hyperrectangle learning method, Machine Learn-
ing 6, 251-276.

Vafaie H. and De Jong K. (1991), Improving the performance of a rule induction
system using genetic algorithms, Proceedings of the First International
Workshop on Multistrategy Learning 1991, R.S. Michalski and G. Tecuei
(Eds), 305-315.

Venturini G. (1992), AGIL: solving the exploration versus exploitation dilemma
in a simple classifier system applied to simulated robotics, Proceedings of
the Ninth International Workshop on Machine Learning 1992, D. Sleeman
and P. Edwards (Eds), 458-463 , Morgan Kaufmann.

Weinberg J.B., Biswas G. and Koller G.R. (1992), Conceptual clustering with
systematic missing values, Proceedings of the Ninth International Work-
shop on Machine Learning 1992, D. Sleeman and P. Edwards (Eds), 464-
469, Morgan Kaufmann.

www.manaraa.com

296

Wilson S.W. (1987), Quasi-Darwinian Learning in a Classifier System, Proceed-
ing of the Fourth International Workshop on Machine Learning 1987, P.
Langley (Ed), 59-65, Morgan Kaufmann.

Wnek J. and Michalski R.S. (1991), An experimental comparison of symbolic
and subsymbolic learning paradigms: phase I - learning logic-style concepts,
Proceedings of the First International Workshop on Multistrategy Learning
1991, R.S. Michalski and G. Tecuci (Eds), 324-339.

